CGHA for principal component extraction in the complex domain

نویسندگان

  • Yanwu Zhang
  • Yuanliang Ma
چکیده

Principal component extraction is an efficient statistical tool which is applied to data compression, feature extraction, signal processing, etc. Representative algorithms in the literature can only handle real data. However, in many scenarios such as sensor array signal processing, complex data are encountered. In this paper, the complex domain generalized Hebbian algorithm (CGHA) is presented for complex principal component extraction. It extends the real domain generalized Hebbian algorithm (GHA) proposed by Sanger (1992). Convergence of CGHA is analyzed. Like GHA, CGHA can be implemented by a single-layer linear neural network with simple computation. An example is given where CGHA is utilized in direction-of-arrival estimation of multiple narrowband plane waves received by a sensor array.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit

In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...

متن کامل

Prediction of dispersed mineralization zone in depth using frequency domain of surface geochemical data

Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical data, which is impossible in spatial domain. In this research work, FD of the surface geochem...

متن کامل

Development of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method

Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation....

متن کامل

Feature reduction of hyperspectral images: Discriminant analysis and the first principal component

When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 1997